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Equations of motion in linearised gravity: IV External fields 
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Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4 

Received 29 January 1979 

Abstract. This paper is a sequel to recent papers on equationsof motion in linearised gravity 
in which a new approach was adopted to study the motion of the sources of some 
Robinson-Trautman fields. We consider here the introduction of an external field to 
drive the source. We demonstrate this for the Levi-Civita fields of both a charged and 
uncharged uniformly accelerating mass. 

1. Introduction 

In a recent series of papers (Hogan and Imaeda 1979a, b, c) a new approach to studying 
the motion of the sources of some Robinson-Trautman (1962) fields in linearised 
gravity was described. This work was concerned with the self-fields of the particle-like 
sources. Under certain conditions it was found that the source (whether charged or 
uncharged) could perform uniform acceleration. In this case the field obtained was the 
linearised Levi-Civita (1918) solution of the vacuum (Einstein or Einstein-Maxwell) 
field equations. This solution has been studied by Kinnersley and Walker (1970) who 
were the first to point out that it possessed a curious type of nodal singularity. They 
conjectured that this was due to the absence of an external field to drive the particle. 
Recently Ernst (1976), using his complex potential framework, has shown how one 
might modify the charged Levi-Civita solution to introduce a constant electric field 
which, he has further shown, gives rise to the acceleration of the source ‘for sufficiently 
small values of the acceleration’. He has also (Ernst 1978) suggested a procedure for 
introducing an external gravitational field to account for the constant acceleration of the 
uncharged Levi-Civita source. 

In this paper we study the problem of introducing an external field to account for the 
acceleration of the linearised Levi-Civita solutions. Our approach is a natural exten- 
sion of recent work (Hogan and Imaeda 1979a, b) dealing with the self-fields of the 
sources. We obtain agreement with Ernst (1976) for the case of a charged source, under 
stringent conditions of approximation. Our result in the uncharged case runs contrary 
to a conjecture contained in Ernst (1978). We expect that the general procedure 
followed in this paper could be applied to the introduction of external fields to drive the 
sources of other Robinson-Trautman solutions, and work is continuing along these 
lines. 

The outline of the paper is as follows: in 5 2 we describe the linearised Levi-Civita 
solution for a charged source and draw attention to the nodal singularity referred to 
above, in a manner given by Robinson and Robinson (1972). As an indication of our 
procedure, we consider in 9 3 a simple candidate for the driving field of a uniformly 
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accelerating mass, suggested by Ernst (1978). We find this candidate unacceptable. The 
interaction of an external electromagnetic field with the field of a charged mass is 
contained in the nonlinear electromagnetic energy-momentum tensor. By solving the 
linearised Einstein-Maxwell vacuum field equations, with the electromagnetic field 
composed of the self-field of the charge and a constant electric field, we demonstrate in 
§ 4 how one finds that the nodal singularity is removed. This is followed by a discussion 
in 0 5 .  

2. The nodal singularity 

The linearised field of a uniformly accelerating charged mass is described in Robinson- 
Trautman form by the line element 

ds2 = 2r2P-2 d l  d t -  2 d u  dr - h du2  (2.1) 

~=-2k~(l-~0)-~[1-ma~~1n(1-~Zo)+fe~a~(1-~Zo)]+0~ (2.2a) 

h = K - 2 H r - 2 ( m + 2 e 2 a [ o ) r - 1 + e 2 r - 2 + 0 2  (2.2b) 

K = 1 + 6mue0 + 6e2a2[i + 0 2  (2.2c) 

H = a60+ ma2{25: - (1 - 6:) 141- ,$)>- 3e2a3&(1 - 5:)  + 0 2 .  (2.2d) 

On a suitable null tetrad in Newman-Penrose (1962) notation, the only nonvanishing 
components of the linearised Weyl and Maxwell tensors are 

( 2 . 3 ~ )  

= -e(2r2)-' + 02 (2.3b) 

respectively. Here the constants m, e and a are the mass, charge and acceleration of the 
source r = 0 when viewed in the background Minkowskian space-time, with line 
element given by equations (2.1) and (2.2) with m = 0. They are small in the sense that 
we consider the dimensionless (using units for which c = G = 1) constants mu, e2a2, 
both small of first order, writing mu = 01, e2a2 = 01. Also 

where 

$2 = -(m + 2e2a6&-3 + e2r-4 + 02 

5o=(f5[-kZo)l(kS+kZo) ( k o  = -exp(-au)). (2.4) 
For a detailed description of the construction of the solution (2.1) and (2.2) the reader is 
referred to Hogan and Imaeda (1979a, b). We show in Appendix A how one trans- 
forms equations (2.1) and (2.2) into a more familiar form of the linearised charged 
Levi-Civita solution. We point out here that in the background Minkowskian space- 
time of equation (2.1), putting m = 0 in equation (2.2), the world-line r = 0 is time-like 
with constant acceleration a and with u as proper time along it. The future null cones 
with vertices on r = 0 have equations u =constant; r is the affine parameter along the 
generators of the null cones and these generators are labelled (on each null cone) by the 
polar coordinates 6, 4 which are related to the complex coordinate 5 by 3 =  
fi exp(i4) tan(el2). We notice that, although some of the metric tensor components 
(2.2) are singular when to = *l, which corresponds to a pair of generators 8 = 0, IT on 
each future null cone u = constant in the background space-time, the fields given by 
equation (2.3) are only singular on r = 0, as one would expect of the fields of a simple 
pole particle. 
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We now examine the 2-surfaces CT = const., r = const. in the space-time described by 

(2.5) 
with P given by equation (2.2). One can show that K in equation (2.2) is the Gaussian 
curvature of this 2-surface. We will now briefly summarise how one looks for nodal or 
conical singularities on this 2-surface in the manner suggested by Robinson and 
Robinson (1972). 

The 2-surface in question is axially symmetric and one can find a coordinate 
transformation (given below) from 5, f to 6, 77 such that (2.5) takes the form 

(2.6) 

where f = f ( [ ) ,  f ( [ ) > O  for t1 < e < t 2  and f(&) = 0 = f(t2). One assumes that f E 
C2[&, 523 and one can show that 

equation (2.1). These have line element 

d12 = 2r2P-’ d l  d i  

d12 = r2( f-’ dY2+ f dV2) 

where K is the Gaussian curvature of the 2-surface and the prime denotes differen- 
tiation with respect to t. Now consider the curve with parametric equations 

in Euclidean 2-space where p is a constant such that 2 p  is an upper bound for If’([)/ for 
6 E [el, t2]. We note that y = 0 when 6 = t1 or & and the gradient of the tangent to the 
curve is given by 

dy/dx = * [ ( 2 ~ / f ’ ) ~ -  1]-1’2. (2.9) 

If this curve is rotated about the x axis through an angle q5 = pq it generates a 2-surface 
with line element given by (2.6) with r = 1. If 0 G q5 < 2.rr then, assuming p > 0 , ~  lies in 
the range 0 d 77 < 27rp-l. A nodal or conical singularity will appear at the ends 
corresponding to 5 = tl or (2 of the 2-surface, where y = 0, unless the tangent to the 
curve (2.8) is inclined at 90” to the x axis where 5 = t1 or t2. By equation (2.9) this will 
be achieved at 6 = t1 if? p = $f’(&), i.e. by a choice of the range of 77. If this choice is 
made, then the node at 5 = 5; will be absent if, using equation (2.7), 

(K de  = 0. (2.10) 

We may write equation (2.5) in the form of equation (2.6), with 

f(t) = (1 -t2)(1 +2mut)-e2a2(3 + g )  (2.11) 

using the transformation 

t This condition may not in general be compatible with 2~ being an upper bound of lf(6)I. In our subsequent 
applicationsf= 1 - e2+ 01, 61 = -1 + 01, 62 = + 1 +  01 and if the 0 1  term is sufficientlysmall there will be no 
incompatibility. 
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with to given by equation (2.4). We note that we no longer have I =  
h exp(i4) tan(B/2), as with the case in the background Minkowskian space-time, but 
we may assume 4' = h exp(ik-'4) tan(B/2), so that as in the previous paragraph 
4 = kq. We shall find that p = 1 + O1. If we put e = 0 in (2.11) we recover the value of 
f(5) obtained by Robinson and Robinson (1972). We calculate from equation (2.1 1) 
that f ( t ) = O  when , $ = ~ 1 = - 1 + 2 e z a 2 + 0 2  and when t = & =  1-2eZaz+O2.  One 
easily sees that f(5) > 0 for < ,$ < 5 2  when ma and e 2 a 2  are sufficiently small. Clearly 
f(5) E C2[&, 521. The node at 5 = ,$I is removed by choosingp = tf'(51) = 1 - 2ma + OZ. 
Thus7  = (1+2ma)C$ + 0 2 .  ThequantityK inequation(2.10)isgivenin(2.2). Wemay 
replace to by 5 in this expression with the residual terms going into the 0 2  error. 
Calculating the integral in equation (2.10) we obtain 

lcr ,$K d 5  = 4ma + OZ. (2.13) 

Hence, so long as a # 0, and whether or not e = 0, the 2-surface possesses a nodal or 
conical singularity at the end corresponding to 5 = 52. This curiosity was first observed 
by Kinnersley and Walker (1970) and it is the purpose of the rest of this paper to 
examine their conjecture: if an external field is introduced to drive the source then an 
additional O1 term will apear on the right-hand side of equation (2.13) to cancel the 
existing one. This will provide us with an equation of motion for the source and the 
elimination of the nodal singularity, modulo an Oz error. 

3. The uncharged source 

In this section we are interested in modifying the self-field of an uncharged uniformly 
accelerating mass by the addition of an external field. The self-field in question is thus 
obtained from equations (2.1) and (2.2) by putting e = 0. 

Let X '  = (x, y ,  z, t )  be rectangular Cartesian coordinates and time in the background 
Minkowskian space-time. The history of the source (the time-like world-line r = 0) in 
this background space-time is given by X '  = x ' ( a )  = a-'(cosh aa)s;  +a-'(sinh aa)Sf, 
and the coordinates X' are related to the coordinates (5, r, a)  in the Minkowskian 
background by (cf Hogan and Imaeda 1979a) 

X '  = x ' ( a ) + r P ; ' l '  ( 3 . 1 ~ )  

p0 = exp(aa)[ t l f+ exp(-2ac)] (3.16) 

5' = ( l / J Z ) ( l + z ) ~ ;  +(I/ iJ5)( l -?)ai  + ( I  -I l@j + ( I  +tl i )s i .  ( 3 . 1 ~ )  

Here also, since we are in the background space-time, we have 5 = JZ exp(iq5) tan(B/2). 
The field described by equations (2.1) and (2.2) is axially symmetric and so it is 

reasonable to look for an external field which is axially symmetric. We therefore 
consider an external field, described by a tensor TI,, of the static Weyl form, given by (cf 
Synge 1966, p 312, in linearised form) 

yl, dX'  dX' = 2(v -A)(dp2 +dz2)  - 2Ap2 dc$2 -2A dt2 (3.2) 
where 

X' = (P, 4, 2, t ) ,  
x = p  COS 4, and y = p sin 4. 

y = 4 P ,  z), A = A  (P, z), 
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The O1 quantities v, A satisfy the field equations 

a 2 ~ / a p 2 + ( i / p ) ( a ~ / d p ) + a Z ~ / a ~ *  = o (3.3a) 

v = I r{(aA/ap)2 - (aA/az)'} dr + 2r(aA/ap)(dA/az) dz = 0 2 .  (3.36) 

As solution of equation (3 .3~)  we choose 

A = kz k =constant. (3.4) 
We are here taking the linearised form of the external field suggested by Ernst (1978). 
With this choice we have, from equation (3.2), 

(3.5) 

We are henceforth specifically interested in the contribution made by equation (3.5) to 
the 2-surface a = constant, r = constant. We may simplify our calculations, without loss 
of generality, if we take this 2-surface to be a=O, r=ro(constant). Under these 
assumptions, and transforming from zi + X i  + (5, E r, a) in equation ( 3 3 ,  we easily 
find that on the 2-surface a = 0, r = ro 

(3.6) 

rij d z '  ctrl'=-2A(fij di dX'+2 dt2)+O2. 

Yij &i dxf i  = -4Ar&? d5 df+  0 2  

where now, by equation (3.1), 

(3.7a) 

(3.76) 

Adding equation (3.6) to equation (2.5) we find that the line element of the 2-surface 
(+ = 0, r = ro for the combined self-field plus external field is 

( 3 . 8 ~ )  

(3.86) 

where Po is given by equation (3.7a), A by equation (3.76) and to by equation (2.4) with 
a = 0. We now transform equation ( 3 . 8 ~ ~ )  into the form (2.6) with 

f (6) = (1 - t2)[ 1 + 2mae - 2 ka-'(l- roa,$)] (3.9) 

by the transformation 

7 = (-i/2) In 5l-l 
5 = to+ ma(1- &)[l -In(l - ~ ~ ) ] - 2 k a - ' ( l - ~ r 0 a & ) .  

( 3 . 1 0 ~ )  

(3.10b) 

We see from equation (3.9) that f ( t ) = O  for t=*l. The Gaussian curvature of 
equation (3.8aj is given by z=-if". One easily finds that now CL = 
1 -2ma -2ka-' -2kro for the removal of the node on equation ( 3 . 8 ~ )  at 5 = -1, while 
the node at = +1 will disappear in the linear approximation if 

+1 

d t  = 4(ma + kro) + 0 2  = 0 2  (3.11) 

that is, if 

mu = -kro+ 0 2 .  (3.12) 
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Since m, a, k are constants it is impossible to satisfy equation (3.12) for more than one 
value of ro. Hence we rule the external field given by (3.5) as unacceptable. This result 
is a counter-example, albeit in the linear approximation, to a recent conjecture by Ernst 
(1978). 

It would appear that one should examine a two-body problem to obtain a solution 
which is acceptable on all grounds. 

4. The charged source 

We now consider an external electromagnetic field to provide the uniform acceleration 
of the charged particle whose self-field is described by equations (2.1) and (2.2). The 
obvious external field to try is a constant electric field E in the z direction. In the 
coordinates Xi this means that the only nonvanishing components of the electromag- 
netic tensor for the external field are F"3' = -F;:t = E. We shall choose the dimension- 
less quantity a-'E'= O1. The self-electromagnetic field F:;" of the charge is the 
LiCnard-Wiechert field (Synge 1970) 

F;;If = er - I (  Lr,kj - U,ki )  

U'  = p 1  +BA' 

B = (1 + rp'kj)r-' ( 4 . 1 ~ )  

where k' = P i l l i ,  with Po and 5' given by equation (3.1), A i  = sinh a d :  +cosh a d :  is 
the 4-velocity of the source and p = a cosh a& +a  sinh amSa is the 4-acceleration of 
the source in the background Minkowskian space-time. The complete electromagnetic 
field is 

F.. I1 = Fseif 11 + F::t . (4.2) 

The electromagnetic energy-momentum tensor is obtained from 

Eii = 77 abFaiFhj - i77i,Fafiuh + 0 2  

= E:;if + E t t  +E:? + O2 (4.3) 

the second equality arising from the substitution of equation (4.2) into equation (4.3). 
The vacuum Einstein-Maxwell linearised field equations read (in units for which 
477 = 1) 

RiJ = -2(E:;'f +E::' + E y t )  + 0 2  (4.4) 

where Rij is the linearised Ricci tensor for a metric of the form 

g. IJ =q..+ ' J  y. .  cl (4.5) 

yi; = +;If + + yyt (4.6) 

where yii = O 1 .  We may write 

with the self-field satisfying 

IJ !4.7) self)  = -2Eseif Rijh 
and the interaction field yi7t and pure external field y?:' satisfying 

R..( rJ  Y int) = -2E;'' R,( = - 2Eext (4.8) 
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respectively. We already have found $;If. It is given in terms of the coordinates 
(5, r, a) by equations (2.1) and (2.2). Our task now is to solve equation (4.8) for $ 
and yy‘. The pure external field is the simplest to deal with and we shall discuss it briefly 
first. 

In coordinates X i  = ( x ,  y ,  z ,  t )  we find that the nonvanishing components of EYt are 

E;;‘ = -E;;‘ = = $E2 = Ole (4.9) 

Transforming to coordinates xi = (p, 4, z, t) in the manner of the previous section we 
find E;;‘ =-f-’ES”: = -8;”: =EZt =$E2.  From these expressions it is easy to verify 
that I?$ + E ,  = 0 and so (cf Synge 1966) we may take yyt in the static Weyl form as in 
equation (3.2), i.e. 

(4.10) 

with v(p,  I) = 01 and A (p, z )  = 01. The linearised field equations, the second of 
equations (4.8), are now 

a2Y/az2+a2Y/ap2 = a2A/ap2+a2A/az2+ ( i / p ) a ~ / a p  ( 4 . 1 1 ~ )  

(l/p)av/ap = E 2  (4.11b) 

aY/az = o (4 .11~)  

a2A/ap2+(l/p) aA/ap +a2A/az2 = E 2 .  (4.11d) 

Making the reasonable assumption that A and Y are both functions of p only, we find 

(4 .12~)  

(4.126) 

where ao, a l ,  a2 are constants of integration. On substituting these into the Weyl tensor 
we find that it is singular on p = 0 unless ao= 0. p = 0 is the z axis so this would 
constitute a ‘wire singularity’ in the Weyl tensor if a. # 0. The constants al,  a2 do not 
contribute to the field (Weyl tensor) and can thus be removed by a trivial gauge 
transformation. The resulting Weyl tensor components are given in Appendix B. 
Hence equation (4.10) becomes 

( 4 . 1 3 ~ )  

(4.136) 

On the 2-surface a = 0, r = ro with p = ro sin e, C = JT exp(i4) tan(8/2) + 01, and 
passing from xi to Xi to (5, r, a) via equation (3,1), we find that equation ( 4 . 1 3 ~ )  
gives the contribution 

(4.14) 

We now move to the interaction field. We shall find that components of the 
interaction energy-momentum tensor depend upon the coordinate U as well as the 
other coordinates, on account of equation (4.1). Because of the complexity this would 
otherwise bring to the problem, we shall henceforth make the ‘slow-motion 
assumption’ 

aa = O1. (4.15) 

This means that the history of the particle in the background space-time does not differ 
greatly from a geodesic (see figure 1). Also if f (a)=O1 then we may write f (a )=  

yyt dZi dZ’=2(v-A)(dp2+dz2)-2Ap2 dd2-2A dt2 

A = $p2E2+ao In p + a l  
1 2  2 ~ = z p  E +a2 

jirt dxi dzi = 2A [qij 6‘ &’ - 2p2 d42] 
A = $p2E2 = 01. 

dl: = 2A [2r3 ’ i2  d 3  d f - 2p2 dq5’1. 
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X(0I 

Figure 1. C is the time-like world line of the source in the background 
space-time. Q is an event on C a parametric distance cr from the event 
0 on C. C' is the time-like geodesic through 0 with tangent A ' ( O ) .  Pis 
an event on C' a parametric distance cr from 0. Equation (4.151 
implies PQ/OQ = $UCT + 02. Olo-01 

f ( 0 )  + 02. We shall do this for the components E:,"'. Hence we shall only be solving the 
first of equations (4.8) for y:?' in the region R between the future null cones cr = 0 
and a = constant, where a a  = O1 (see figure 2). The field can be considered indepen- 
dent of a in this region. 

Figure 2. NI is the future null cone CT = 0. N2 is the future 
null cone CT = const. We solve for y!yt at events in the region 
R between NI and N2 and in the neighbourhood of the 
source world line C, on  account of equation (4.18). 

Calculating E t t  and then E?, and making the assumption (4.15), we find the 

( 4 . 1 6 ~ )  

nonvanishing components 

E;1' = E22 = 
-int -. 

= -eEp-' sin 6(u - azp-' sin 6 cos 6 )  + 0 2  
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E?; = - eEazp-’ sin3 8 + O2 

I??: = eEap-’ sin2 8 + O2 

1789 

(4.16b) 

( 4 . 1 6 ~ )  

where, from equation (3 .1) ,  

p = r sin 8+01, z = a - ’ + r c o s e + ~ ~ .  (4.17) 

We now make a further approximation, namely that 

ar = O1. (4.18) 

This confines the range of r, the retarded distance from the source world line in the 
background space-time. Thus az = 1 + O1 and we may neglect E?: in favour of A!??;. 
Also 

(4.19) 

Once again we find that I?: +I?: = 0 and so we may take .i;iy‘ in the static Weyl form just 
as in equation (4.10). We shall use P, fi  this time in place of Y ,  A. If we make the change 
of variable (4.17), the field equations, the first of equations (4.8), read 

( 4 . 2 0 ~ )  

(4.20b) 

a2fi/ar2+ (2 / r )  a f i /a r  + ( l / r 2 )  a2fi/ae2 + (cot e / r 2 )  afi/ae = 2eEr-2 cos e + 02. ( 4 . 2 0 ~ )  

These may be solved by a separation of variables, both for P(r, e )  and fi(r, e), of the form 
g ( r )  + h(B). The general solutions are 

fi  = -eE cos 6 + bo In r sin 6 - $bl In[( 1 +cos e ) / (  1 -cos e) ]  - b2/r  + b3 ( 4 . 2 1 ~ )  

(4.216) 

where the b and co are constants of integration. On substituting these expressions into 
the interaction linearised Weyl tensor we find that the field is singular when 0 = 0 or 7r 

(these are wire singularities) unless bo = bl = 0. The constants b3 and co can be removed 
by a gauge transformation. This leaves only b2. The resulting components of the Weyl 
tensor are given in Appendix B, where it is further shown that the b2 term would 
correspond to a superimposed linearised Schwarzschild field of mass b2. The history of 
this source in the background Minkowskian space-time would be the time-like world 
line C’ in figure 1 .  We therefore take b2 = 0 and thus 

(4.22) 

E?; = eEr-’ cos 0 + 02. 

r2 COS e a2P/ar2 +sin 8 at/ae +COS e a23/ae2 = 2eE + O2 

at/ae - r  cot e aP/ar = 2eE sin i3 + O2 

P = -2eE cos 6 +co 

5 = 2fi = -2eE cos 0. 

Hence y: is given by 

(4.23) 

which is similar in form to equation (4.13) since in that case also v=2A.  The 
contribution this makes to the line-element of the 2-surface (+ = 0, r = ro is, in similar 
fashion to equation (4.14), 

dl: = 2fi(2r@i2 d l  d f - 2 ~ ’  d4’) (4.24) 

where Po is given by equation ( 3 . 7 ~ ) .  
To obtain the line element on the 2-surface U = 0, r = ro of the complete field given 

by equations (4.5) and (4.6), we must add together equation (2.5) with r = ro, equations 
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(4.14) and (4.24). We arrive at 

d p =  2r iP i2(1  -2Q+2h)  d( df-4Ap2 dr$2 

Q = -ma&, In( 1 - 6;) +?e a (1 - 5;) 
A = A + f i  

3 2 2  

( 4 . 2 5 ~  t 

(4.256) 

( 4 . 2 5 )  

with an O2 error. We can write this in the form (2.6) with 

f ( 5 )  = (1 - 5*)( 1 - 2eE5 + 2ma5) - e2a ’ ( 3  + t4) (1.26) 

using the transformation 

g = (--i/2) In st-‘ = 4 + 01 (4.27n J 

(4.276) 

We see from equation (4.26) that f(5) = 0 when 5 = t1 or & with t1 = -1 + 2e22* 
52 = 1 - 2e U, . The node at 6 = 51 is removed (cf 0 2) by choosing p = 1 - 2ma + 2eE so 
that the 01 term in equation (4.27) is 2ma4 -2eE4. The Guassian curvature of the 
2-surface ( 4 . 2 5 ~ )  is given by k = -if’’ and one then has 

6 = to -t ma (1 - &)(I - ln(1- 5;)) - e2a ’to (3 - 6;). 

2 2  

(4.28) 

and so the node at 5 = .f2 is removed in the linear approximation, provided 

ma = e E + 0 2 .  (4.29) 

This is just the equation of motion one would expect to have. We have obtained here a 
result in agreement with Ernst (1976) but only under very stringent conditions of 
approximation. Comparing equation (4.28) with equation (2.13) we see that the 
unwanted node on the 2-surface U = 0, r = ro can be removed with a suitable choice of 
external field. 

5. Discussion 

One might presume that within our approximation scheme, and in the light of our result 
in § 4, a charged particle moving in an external electromagnetic field will, in general, 
move according to the Lorentz equation of motion. This, however, will have to be 
proved. The case of a neutral particle is somewhat more difficult. Clearly what is 
needed is a solution for a two-body system, within the above scheme. This would 
appear to be tractable and might also be of astrophysical significance. It is hoped that 
the present paper both complements our previous work and sheds some light on an 
approach to these problems. 

Finally, it is interesting to note that when the problem of establishing the motion of 
extended sources is tackled in a systematic way (cf Hogan and McCrea 1974) one makes 
the assumption of slow-motion and one calculates the field only in the neighbourhood 
of the sources. Retarded potentials are expanded in terms of instantaneous potentials- 
-an expansion which is only valid near the sources. Both of these conditions are 
reflected in our assumptions (4.15) and (4.18). 
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Appendix A 

The exact Levi-Civita (1918) solution of the vacuum Einstein-Maxwell field equations 
may be written in the form (cf Kinnersley and Walker 1970) 

ds2 = r2(G-’ d t 2  + G dq2) - 2ar2 d a  d r  - 2 dr d a  - C d a 2  (A.1) 

G = 1 - 5’ - 2mat3 - e2a254 (A.2) 

-a2r2(1 -52-2ma53-e2a254)-2(m +2e2a5)r-’ +e2r-’. (A.3) 

ds2 = r2G[(b de-u d ~ ) ~ + d q ~ ] - 2  dr dcr- h d a 2 +  0 2  (A.4) 

(A.5) b = (1 -&-‘[I + (2ma53 +e  a 5 )(I - 5’)-’] 
(A.6) 

where 

2 2 3  C = 1+6ma&+6e2~252-2ar(5+3ma52-2e  a 5 ) 

The linearised form of this is 

where 
2 2 4  

h = 1 + 6ma5 +6e2a252 -2ar(5 + 3ma5’ - 2e2a253) -2(m + 2e2a&-’ + e2r-’. 

If one makes the transformation 

7 = (-i/2) In lf-’ 
5 = 50 - ma& - ma(1- 5;) ln(1- 5;) - $e2a250 

(A.7) 
with to given by equation (2.4), one finds that equation (A.4) takes the form (2.1), with P 
and h given by 

P = -2ko(l- 50)-’[1- ma& ln(1- 5;) +Ze a (1 - 5;) +$e2a2Q1(50)] + 0 2 ,  

2 2 3  3 2 2  +e a 50+ae Q (1-r;)ln[(l+.50)/(1-5o)I 

3 2 2  

h = K - 2Hr - 2(m + 2e2a(o)r-1 + e2r-’ + 0 2  

K = 1+6ma50+6e2a2&+02 
3 2 2  H = a&, + ma[25; - (1 - 5;) In( 1 -&)I - 3e2a35o(l - 5;) +ze a (a/aa)Q1(50) + 0 2 .  

This is in agreement with equation (2.2) except for the term involving Q1(t0) in P and H. 
Here Q1(tO) is the 1 = 1 Legendre function of the second kind. It has been shown in 
Hogan and Imaeda (1979a, equations (2.7), (2.8)’ 1979b equations (3.13)-(3.15)) that 
such a term may be removed by a gauge transformation provided its coefficient, in this 
case $e2a2, is a constant. Hence we conclude that (A.8) describes exactly the same field 
as that given by (2.2). Since the gauge term is absent in (2.2) we have subsequently, in 
equation (2.12), utilised a different transformation to (A.7) in order to transform the 
2-surface CT =constant, r =constant into the form (2.6). 
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Appendix B 

The linearised static axially symmetric Weyl form of the line element may be written 

(B.1) CD = (e’)’+ (e2)’ + (e3)’- (e4)’ 
with 

= ( 1 +  V - A )  dp 

0 2 = ( 1  + V  - A )  d t  

e 3 = p ( l  - A )  d 4  

O4 = (1 + A )  dt 

where A (p, z )  = 01, ~ ( p ,  z )  = O1. These l-forms provide the components of an 
orthonormal tetrad. The nonvanishing components of the linearised Weyl tensor on 
this tetrad are 

where f l  = af/ap, f2  = af/az and Af = a2f/ap2 +a2f/az2 for f = f(p, 2). 

by equations (4.13) are thus 
The nonvanishing tetrad components of the Weyl tensor for the external field given 

03.4) 

Therefore CZLd is free from singularity, as one would expect. 
We shall display here the nonvanishing tetrad components of the interaction- 

linearised Weyl tensor, obtained using equation (4.21) with all constants put to zero 
except e, E and bz in order to exhibit the fact that this field is free from wire singularities 
at 0 = 0 or T. We carry out the calculation using (B.3) with the change of variable 
(4.17). We find 

Cyi12 = -C& = -b2/r3 - (eE cos 6 ) / r  + 0 2  

ct;:31 = (b2/r3)(2 - 3 sin2 e) + (eE cos e/r2)(2 - 3 sin2 e )  + o2 

ext ext 2C?;‘12 = -C3434 = c 3 1 1 3  = -2c:& 2c:;\4 = -C:”;4 -E2.  

2 

C&3 = c4;t24 = 3b2 sin 8 cos 6 / r 3  + 3eE sin 6 cos2 9/r + 0 2  

ci;l:32 = (b2/r3)(2 - 3 cos2 8 )  - (eE cos e/r2)(1 - 3 sin2 6 )  + O2 

cTi41 =(b2/r3)(1-3sin2 6)+(eEcos e/r2)(1-3sin2 t9)+02 

c?:42 = (bz/r3)(1 - 3 cos2 e) - (eE cos 6/r2)(2 - 3 sin2 e) + oz. 
Putting E = 0 we are left with the terms involving the constant bz. These correspond, by 
equation (4.21), to 

(B.6) -1 i=-bzr  , c = o .  
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This is a disguised form of the linearised Schwarzschild solution with mass b2. This is 
most easily seen by first writing out the linearised Weyl line element using equation 
(B.6), i.e. 

ds2= (1+2b2/r) (dp2+d~2+~2d~2)- (1-2b2/r)  d t2+0z .  03.7) 

Now p and z are related to r and 6 by equation (4.17). Up to now we always applied 
equation (4.17) to O1 terms, and thus the O1 term added to (4.17) would be automatic- 
ally swallowed up in the 0 2  error. This is not the case if we apply equation (4.17) to 
equation (B.7). The suitably modified transformation reads 

p = ( r  - b2) sin 6, z=a-’+(r-b2)cos8.  (B.8) 

03.9) 

When this is applied to equation (B7) we obtain 

ds2= (1 +2b2/r)  dr2fr2(dB2+sin2 6 dq5’)-(1 - 2 b 2 / r )  d t2+02  

which is the linearised Schwarzschild solution, with the small mass parameter b2, in a 
more familiar form. Since we do not want such an auxiliary mass in the external field we 
put bZ = 0. Hence the tetrad components of the interaction-linearised Weyl tensor are 
in fact given by equation (B.5) with bz = 0. 
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